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3 An Introduction to Digital Communication Systems

Over Discrete Memoryless Channel (DMC)

3.1 Discrete Memoryless Channel (DMC) Models

In this section, we keep our analysis of the communication system simple
by considering purely digital systems. (Recall that the transmitted signal
from an antenna is an analog waveform.) To do this, as shown in Figure 5,
we assume all non-source-coding parts of the system, including the physical
(analog) channel, can be combined into an “equivalent channel” which we
shall simply refer to in this section as the “channel”.
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Figure 4: Equivalent Channel Considered in Section 3.1.

Example 3.1. In Chapter 2, the (equivalent) channel does not change (cor-
rupt) its input. The channel output is assumed to be the same as the channel
input.
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Example 3.2. The binary symmetric channel (BSC), which is the
simplest model of a channel with errors, is shown in Figure 5.
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Figure 5: Binary symmetric channel and its channel diagram

• “Binary” means that the there are two possible values for the input and
also two possible values for the output. We normally use the symbols
0 and 1 to represent these two values.

• Passing through this channel, the input symbols are complemented
with crossover probability p.

• It is simple, yet it captures most of the complexity of the general prob-
lem.

Example 3.3. Consider a BSC whose samples of input and output are
provided below

x: 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1
y: 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1

Estimate the following (unconditional and conditional) probabilities by their
relative frequencies.

P [X = 0] P [X = 1]

P [Y = 0] P [Y = 1]

P [Y = 0|X = 0] P [Y = 1|X = 0]

P [Y = 0|X = 1] P [Y = 1|X = 1]
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 Q y xX Y

Figure 6: Discrete memoryless channel

Definition 3.4. Our general model for discrete memoryless channel
(DMC) is shown in Figure 6.

• The channel input is denoted by a random variable X.

◦ The pmf pX(x) is usually denoted by p(x).

◦ The support SX is often denoted by X .

∗ X may be referred to as the channel input alphabet.

∗ In many DMC, |X | is a power of two.

◦ For finite |X |, the whole pmf p(x) is usually expressed in the form
of a row vector p or π.

• Similarly, the channel output is denoted by a random variable Y .

◦ The pmf pY (y) is usually denoted by q(y) and usually expressed in
the form of a row vector q.

◦ The support SY is often denoted by Y and referred to as the chan-
nel output alphabet.

• The channel corrupts its input X in such a way that when the input
is X = x, its output Y is randomly selected from the conditional pmf
pY |X(y|x).

◦ In this context, each conditional probability pY |X(y|x) is usually
referred to as the channel transition probability.

◦ The conditional pmf pY |X(y|x) is usually denoted by Q(y|x).
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and usually expressed in the form of a (probability) transition
matrix Q:

y

x

 . . . ... . . .

· · · P [Y = y|X = x] · · ·
. . . ... . . .


This matrix is often referred to as the “matrix of transition prob-
abilities” or simply the “channel matrix”.

◦ The channel is called memoryless10 because its channel output at
a given time is a function of the channel input at that time and is
not a function of previous channel inputs.

◦ Here, the transition probabilities are assumed constant. However,
in many commonly encountered situations, the transition probabil-
ities are time varying. An example is the wireless mobile channel
in which the transmitter-receiver distance is changing with time.

• When the alphabets are collections of integers, we usually write p(x)
and q(y) as px and qy respectively.

Alternatively, when the members of the alphabets are explicitly indexed
(as x1, x2, . . . and y1, y2, . . .), we often define

pi ≡ p(xi) and qj = q(yj).

3.5. The channel matrix Q is often defined or visualized in the form of the
channel diagram as shown in Figure 8. Note that each arrow should be
labeled with the transition probability Q(y|x). See also Example 3.12.

10Mathematically, the condition that the channel is memoryless may be expressed as [12, Eq. 6.5-1 p.
355]

pY n
1 |Xn

1
(yn1 |xn1 ) =

n∏
k=1

Q (yk |xk )

where xn1 denotes the vector (x1, x2, . . . , xn).
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𝑆 ≡  𝑝 𝑥 ≡ 𝑝 𝑥 𝑝 | 𝑦|𝑥 ≡ 𝑄 𝑦|𝑥
𝑆 ≡  𝑝 𝑦 ≡ 𝑞 𝑦 𝑝 , 𝑥, 𝑦 ≡ 𝑝 𝑥, 𝑦
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Figure 7: Notation involved in defining and describing characteristics of digital communi-
cation channels
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Figure 8: Conversion between the channel matrix and the channel diagram.

3.6. We now have three equivalent ways to specify a binary symmetric
channel (BSC) defined in Example 3.2. A more general binary channel that
may not be symmetric is called binary asymmetric channel (BAC).
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Example 3.7. For the binary channel estimated in Example 3.3,

1

Channel Input Alphabet
 ≡ 𝑆  

Input Probabilities
pmf 𝑝 𝑥 ≡ 𝑃 𝑋 𝑥
𝑝 0
𝑝 1

Input Probability Vector
𝐩

Channel Transition Probabilities
Conditional pmf
𝑝 | 𝑦 𝑥 ≡ 𝑃 𝑌 𝑦|𝑋 𝑥
𝑝 | 0 0
𝑝 | 1 0
𝑝 | 0 1
𝑝 | 1 1

Channel Matrix

𝐐

Channel Output Alphabet
 ≡ 𝑆

Output Probabilities
pmf 𝑝 𝑦 ≡ 𝑃 𝑌 𝑦
𝑝 0
𝑝 1

Output Probability Vector
𝐪

0

1

0

1

1/3

2/3

1/17

16/17

X Y

𝒑 𝟎 𝟎. 𝟏𝟓

𝒑 𝟏 𝟎. 𝟖𝟓

Example 3.8. Suppose, for a DMC, we have X = {x1, x2} and Y =
{y1, y2, y3}. Then, its probability transition matrix Q is of the form

Q =

[
Q (y1|x1) Q (y2|x1) Q (y3|x1)
Q (y1|x2) Q (y2|x2) Q (y3|x2)

]
.

You may wonder how this Q happens in physical system. Let’s suppose
that the input to the channel is binary; hence, X = {0, 1} as in the BSC.
However, in this case, after passing through the channel, some bits can be
lost11 (rather than corrupted). In such case, we have three possible outputs
of the channel: 0, 1, e where the “e” represents the case in which the bit is
erased by the channel.

11We assume the receiver knows which bits have been erased.
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Example 3.9.

1

Channel Input Alphabet


Input Probabilities
pmf 𝑝 𝑥 ≡ 𝑃 𝑋 𝑥
𝑝 𝐻 ≡ 𝑃 𝑋 𝐻
𝑝 𝑇 ≡ 𝑃 𝑋 𝑇

Input Probability Vector
𝐩

Channel Transition Probabilities

Channel Matrix

𝐐

Channel Output Alphabet


Output Probabilities
pmf 𝑞 𝑦 ≡ 𝑃 𝑌 𝑦
𝑞 𝐻 ≡ 𝑃 𝑌 𝐻
𝑞 𝐸 ≡ 𝑃 𝑌 𝐸
𝑞 𝑇 ≡ 𝑃 𝑌 𝑇

Output Probability Vector
𝐪

H

T

H

T
X Y

𝒑 𝟎 𝟎. 𝟑

𝒑 𝟏 𝟎. 𝟕

E

Example 3.10. Consider a DMC whose samples of input and output are
provided below

x: 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1
y: 1 3 2 2 1 2 1 2 2 3 1 1 1 3 1 3 2 3 1 2

Estimate its input probability vector p, output probability vector q, and Q
matrix.

3.11. Observe that the sum along any row of the Q matrix is 1.

• This is different from the P matrix (the joint probability matrix) that
was the main focus in basic probability class. Recall that, for P matrix,
the sum of all elements in the matrix is 1.
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◦ See 3.15 for more discussion about the P matrix.

Example 3.12. The channel diagram for a channel whose

X = {0, 1} , Y = {1, 2, 3} , p = [0.2 0.8] , and Q =

[
0.5 0.2 0.3
0.3 0.4 0.3

]
is shown in Figure 9.
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0.3

X Y2

𝒑 𝟎 = 𝟎. 𝟐

𝒑 𝟏 = 𝟎. 𝟖

Figure 9: Channel diagram for Example 3.12.

3.13. Knowing the input probability vector p and the channel (probability
transition) matrix Q, we can calculate the output probabilities q from

q = pQ. (5)

To see this, recall the total probability theorem: If a (finite or in-
finitely) countable collection of events {B1, B2, . . .} is a partition of Ω, then

P (A) =
∑
x

P (A ∩Bi) =
∑
x

P (A|Bx)P (Bx). (6)

∩ ∩ ∩

∩ ∩

For us, event A is the event [Y = y]. Applying this theorem to our
variables, we get

q(y) = P [Y = y] =
∑
x

P [X = x, Y = y]

=
∑
x

P [Y = y|X = x]P [X = x] =
∑
x

Q(y|x)p(x).
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This calculation, illustrated below, is exactly the same as the matrix multi-
plication calculation performed to find each element of q:

1

jy

 jq y  
 

 
 
    
 



p

Q

q pQ














 

Example 3.14. For a binary symmetric channel (BSC) defined in 3.2,

q (0) = P [Y = 0] = P [Y = 0, X = 0] + P [Y = 0, X = 1]

= P [Y = 0|X = 0]P [X = 0] + P [Y = 0|X = 1]P [X = 1]

= Q (0 |0) p (0) +Q (0 |1) p (1)

=
[
p (0) p (1)

] [ Q (0 |0)
Q (0 |1)

]
= p

[
Q (0 |0)
Q (0 |1)

]
= (1− p)× p0 + p× p1

q (1) = P [Y = 1] = P [Y = 1, X = 0] + P [Y = 1, X = 1]

= P [Y = 1|X = 0]P [X = 0] + P [Y = 1|X = 1]P [X = 1]

= Q (1 |0) p (0) +Q (1 |1) p (1)

=
[
p (0) p (1)

] [ Q (1 |0)
Q (1 |1)

]
= p

[
Q (1 |0)
Q (1 |1)

]
= p× p0 + (1− p)× p1

Therefore,

q =
[
q (0) q (1)

]
=

[
p

[
Q (0 |0)
Q (0 |1)

]
p

[
Q (1 |0)
Q (1 |1)

] ]
= p

[
Q (0 |0) Q (1 |0)
Q (0 |1) Q (1 |1)

]
= pQ
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3.15. Recall, from ECS315, that there is another matrix called the joint
probability matrix P. This is the matrix whose elements give the joint
probabilities PX,Y (x, y) = P [X = x, Y = y]:

y

x

 . . . ... . . .

· · · P [X = x, Y = y] · · ·
. . . ... . . .

 .
Recall also that we can get p(x) by adding the elements of P in the row
corresponding to x. Similarly, we can get q(y) by adding the elements of P
in the column corresponding to y.

By definition, the relationship between the conditional probability Q(y|x)
and the joint probability pX,Y (x, y) is

Q(y|x) =
pX,Y (x, y)

p(x)
.

Equivalently,
pX,Y (x, y) = p(x)Q(y|x).
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Figure 10: Conversion from the Q matrix to the P matrix and the output probability
vector q.
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Therefore, to get the matrix P from matrix Q, we need to multiply each
row of Q by the corresponding p(x). This is illustrated in Figure 10. The
same calculation could be done easily in MATLAB by first constructing a
diagonal matrix from the elements in p and then multiply this to the matrix
Q:

P =
(
diag

(
p
))

Q. (7)


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


︸ ︷︷ ︸

diag
([
a b c d

])


5 4 6 6
6 1 6 3
1 2 1 5
6 4 6 1

 =


5a 4a 6a 6a
6b b 6b 3b
c 2c c 5c

6d 4d 6d d



Remarks:

(a) Both P and Q give the statistical relationship between the two random
variables X and Y .

(b) The P matrix gives complete information about X and Y . Any proba-
bility calculation involving X and Y can be found from the P matrix.

(c) However, from (7) above, we see that knowing the p vector and the Q
matrix also gives the complete information as well.

Once the P matrix is obtained, we can calculate the output probability
vector q by adding the elements of P along each column; this gives

q =
[

1 1 · · · 1
]
P =

[
1 1 · · · 1

]
diag

(
p
)

Q = pQ.

[
1 1 1 1

] 
5 4 6 6
6 1 6 3
1 2 1 5
6 4 6 1

 =
[

18 11 19 15
]

[
1 1 1 1

] 
a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


︸ ︷︷ ︸

diag
([
a b c d

])
=
[
a b c d

]
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Example 3.16. Binary Asymmetric Channel (BAC): Consider a bi-
nary input-output channel whose matrix of transition probabilities is

Q =

[
0.7 0.3
0.4 0.6

]
.
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If the two inputs are equally likely, find the corresponding output proba-
bility vector q and the joint probability matrix P for this channel. [18, Ex.
11.3]

Example 3.17. Find the output probability vector q and the joint proba-
bility matrix P for the DMC defined in Example 3.12:
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3.2 Decoder and Symbol Error Probability

3.18. Knowing the characteristics of the channel and its input, on the
receiver side, we can use this information to build a “good” receiver.

We now consider a part of the receiver called the (channel) decoder.
Its job is to guess the value of the channel input12 X from the value of the
received channel output Y . We denote this guessed value by X̂.

Information 
Source

Destination

Channel

Received

Signal

Transmitted

Signal

Message

Recovered 
Message

Source 
Encoder

Channel 
Encoder

Digital
Modulator

Digital
Demodulator

Transmitter

Remove 
redundancy

Add 

systematic 

redundancy
Equivalent

Channel

X: channel input

Y: channel output

Source 
Decoder

Channel 
Decoder

(Detector)

Receiver

𝑋

Decoded
value

𝑊

𝑊

 ˆ ˆX x Y

Figure 11:
Adding a (chan-
nel) decoder
to improve the
performance
of the system
in Figure 4
considered in
Section 3.1.

3.19. A “good” decoder is the one that (often) guesses correctly. So, our
goal here is to

• the probability of guessing

• the probability of guessing

Quantitatively, to measure the performance of a decoder, we define a quan-
tity called the (symbol) error probability.

12To simplify the analysis, we still haven’t considered the channel encoder. (It may be there but is
included in the equivalent channel or it may not be in the system at all.)
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Definition 3.20. The (symbol) error probability, denoted by P (E), can
be calculated from

P (E) = P
[
X̂ 6= X

]
.

• E is the (decoding) error event.

• A dual (complementary) quantity is the probability of correct decoding:

P (C) = P
[
X̂ = X

]
= 1− P (E).

• For channel with binary input, the error probability is the same as bit
error rate (BER).

3.21. A “reasonable” decoder should make a guess based on all the infor-
mation it has obtained. Here, the only information it can observe is the
value of Y . Therefore, a decoder is a function of Y , say, g(Y ). Therefore,
X̂ = g(Y ).

We use x̂(·) to denote this function g(·); So, X̂ = x̂(Y ). It is a determin-
istic function operating on the random channel output Y ; the randomness
in the decoded value X̂ comes from the randomness in Y .

Definition 3.22. A “naive” decoder is a decoder that simply sets X̂ = Y .
Equivalently,

x̂naive(y) = y.

• We may call this a “pass-through” decoder or a “do-nothing” decoder.

• It usually has poor performance. However, we shall see that, in some
cases, this simple decoder can be optimal13.

3.23. For general DMC, the error probability of the naive decoder is

P (E) = P
[
X̂ 6= X

]
= P [Y 6= X] = 1− P [Y = X]

= 1−
∑
x

P [Y = x,X = x] = 1−
∑
x

P [Y = x |X = x ]P [X = x]

= 1−
∑
x

Q (x |x) p (x)

13“Optimal” means nothing has better error probability in that particular situation.

38



Example 3.24. Consider the BAC channel and input probabilities specified
in Example 3.16. Find P (E) when X̂ = Y .

(a) Method 1:

1

0

1

0

1

0.3

0.7

0.4

0.6

X Y

      

      

0.7 0.3

0.4 0.6

 
  

 
Q

(b) Method 2: To calculate the error probability directly, we write

P (E) = P
[
X̂ 6= X

]
= P [Y 6= X]

= P [Y = 0, X = 1] + P [Y = 1, X = 0]

= P [Y = 0 |X = 1]P [X = 1] + P [Y = 1 |X = 0]P [X = 0]

= 0.4× 1

2
+ 0.3× 1

2
= 0.35.

(c) Method 3: Using the derived formula from 3.23,

P (E) = 1− (Q (0 |0) p (0) +Q (1 |1) p (1))

= 1−
(

0.7× 1

2
+ 0.6× 1

2

)
= 0.35.

Example 3.25. Continue from Examples 3.12 and 3.17. Find the error
probability P (E) when a naive decoder is used with a DMC channel in

which X = {0, 1}, Y = {1, 2, 3}, Q =

[
0.5 0.2 0.3
0.3 0.4 0.3

]
and p = [0.2, 0.8].

1

0.2

0.8

00 0

1

0.10 0.04 0.06

0.24 0.

.5 0.2

1

0.3

0.3 0.4 0.3 32 0.24









 
 

 

 
  

 
Q P

1 2 3 1 2 3x
y xy
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Example 3.26. DIY Decoder: Consider a different decoder specified in
the decoding table below. Find the error probability P (E) when such
decoder is used in Example 3.25.

y x̂(y)

1 0
2 1
3 0

Example 3.27. Repeat Example 3.26 but use the following decoder

y x̂(y)

1 1
2 1
3 0

Observation: For each column of the P matrix, we circle the probability
corresponding to the row of x that has the same value as x̂(y).

3.28. A recipe for finding P (E) of any (DIY) decoder:

(a) Find the P matrix by scaling each row of the Q matrix by its corre-
sponding p(x).

(b) Write x̂(y) values on top of the y values for the P matrix.

(c) For column y in the P matrix, circle the element whose corresponding
x value is the same as x̂(y).

(d) P (C) = the sum of the circled probabilities. P (E) = 1− P (C).
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3.3 Optimal Decoding for DMC

From the previous section, we now know how to compute the error probabil-
ity for any given decoder. Here, we will attempt to find the “best” decoder.
Of course, by “best”, we mean “having minimum value of error probabil-
ity”. It is interesting to first consider the question of how many reasonable
decoders we can use.

3.29. How many “reasonable” decoders are there?: Recall from 3.21 that
a decoder x̂(·) is a function that map each observed valued of the channel
output y to the guessed value of the channel input. Therefore we can think
of a decoder as a table:

1

 
1

ˆ

j

n

y y
y

y

y

x





Channel output

Decoded value

Each 𝑦 value has 
  options for 𝑥 𝑦

 rows

We have already seen this table representation in Example 3.26 and Example
3.27. Such table has |Y| rows. For each value of y, we need to specify what
is the value of x̂(y). To have a chance of correct guessing, any “reasonable”
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decoder would select the value of x̂(y) from X . Therefore, there are |X ||Y|
reasonable decoders.

Example 3.30. The naive decoder in Example 3.25 is not a reasonable
decoder. The channel input X is either 0 or 1. So, it does not make sense
have a guess value of x̂(2) = 2 or x̂(3) = 3.

Example 3.31. “Reasonable” Decoder for BSC: For BSC in Example 3.2,
any decoder has to answer two important questions:

(a) What should be the guess value of X when Y = 0 is observed?

(b) What should be the guess value of X when Y = 1 is observed?

Essentially, any reasonable decoder for the BSC needs to complete this
table:

1

 

1

ˆ
0
y x y

So, only four reasonable decoders for BSC:

1

 

1

ˆ
0
y x y  

1

ˆ
0
y x y 

1

ˆ
0
y x y 

1

ˆ
0
y x y

Example 3.32. For the DMC defined in Example 3.25, how many reason-
able decoders are there?

We calculate the error probability of three decoders in Example 3.25, Ex-
ample 3.26, and Example 3.27. There are still many reasonable possibilities
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to evaluate. Using MATLAB, we can find the error probability for all possible
reasonable decoders:

y x̂D1(y) x̂D2(y) x̂D3(y) x̂D4(y) x̂D5(y) x̂D6(y) x̂D7(y) x̂D8(y)

1 0 0 0 0 1 1 1 1
2 0 0 1 1 0 0 1 1
3 0 1 0 1 0 1 0 1

P (E) 0.80 0.62 0.52 0.34 0.66 0.48 0.38 0.20

3.33. For general DMC, it would be tedious to list all possible decoders.
It is even more time-consuming to try to calculate the error probability for
all of them. Therefore, in this section, we will derive a visual construction
and a formula of the “optimal” decoder.

3.34. From the recipe 3.28 for finding P (C) and P (E), we see that P (C) is
the sum of our circled numbers. So, to maximize P (C), we want to circle
the largest number. For row y in the decoding table, whatever the value we
select for x̂(y) will determine which number will be circled in the column
corresponding to y in matrix P. To maximize P (C), we want to circle the
largest number in the column. This means x̂(y) should be the same as the
x value that maximizes the probability value in the corresponding column.

Example 3.35. For the DMC and the input probablities defined in Example
3.25, the joint pmf matrix P was found to be

x \ y 1 2 3[ ]
0 0.1 0.04 0.06
1 0.24 0.32 0.24

Therefore, the optimal decoder is

3.36. Deriving the optimal decoder: Mathematically, we first note that
to minimize P (E), we need to maximize P (C). Here, we apply the total
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probability theorem by using the events [Y = y] to partition the sample
space:

P (C) =
∑
y

P (C |[Y = y])P [Y = y].

Event C is the event [X̂ = X]. Therefore,

P (C) =
∑
y

P
[
X̂ = X |Y = y

]
P [Y = y].

Now, recall that our decoder is a function of Y ; that is X̂ = x̂(Y ). So,

P (C) =
∑
y

P [x̂ (Y ) = X |Y = y ]P [Y = y]

=
∑
y

P [X = x̂ (y) |Y = y ]P [Y = y]

In this form, we see14 that for each Y = y, we should maximize P [X = x̂ (y) |Y = y ].
Therefore, for each y, the decoder x̂(y) should output the value of x which
maximizes15 P [X = x|Y = y]:

x̂optimal (y) = arg max
x

P [X = x |Y = y ] .

In other words, the optimal decoder is the decoder that maximizes the
“a posteriori probability” P [X = x |Y = y ].

Definition 3.37. The optimal decoder derived in 3.36 is called the maxi-
mum a posteriori probability (MAP) decoder:

x̂MAP (y) = x̂optimal (y) = arg max
x

P [X = x |Y = y ] . (8)

3.38. After the fact, it is quite intuitive that this should be the best decoder.
Recall that the decoder don’t have a direct access to the X value.

14We also see that any decoder that produces random results (on the support of X) can not be better
than our optimal decoder. Outputting the value of x which does not maximize the a posteriori probability
reduces the contribution in the sum that gives P (C).

15For those who are not familiar with the “arg max” (arguments of the maximum) function,

arg max
x

f(x) = the x value that maximizes f(x).

The corresponding maximum value of f(x) is max
x

f(x). In other words, in contrast to global maximum,

referring to the largest outputs of a function, arg max refers to the inputs, or arguments, at which the
function outputs are as large as possible. For example, for f(x) = 5 − x2, we have arg max

x
f(x) = 0 and

max
x

f(x) = 5.
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• Without knowing the value of Y , to minimize the error probability, it
should guess the most likely value of X which is the value of x that
maximize P [X = x].

• Knowing Y = y, the decoder can update its probability about x from
P [X = x] to P [X = x|Y = y]. Therefore, the decoder should guess the
value of the most likely x value conditioned on the fact that Y = y.

3.39. We should manipulate Formula (3.37) for the MAP decoder a bit
further because, in practice, we usually only know p(x) and Q(y|x). To
connect these terms to P [X = x|Y = y] required in (3.37), fist, recall “Form
1” of the Bayes’ theorem:

P (B|A) = P (A|B)
P (B)

P (A)
.

Here, we set B = [X = x] and A = [Y = y].

Therefore,
x̂MAP (y) = arg max

x
Q (y |x) p (x) . (9)

Note that the term P [Y = y] does not depend on x and it is positive; there-
fore, it does not change the the answer of arg max and hence can be ignored.

3.40. A recipe for finding the MAP decoder (optimal decoder) and its
corresponding error probability:

(a) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(b) Select (by circling) the maximum value in each column (for each value
of y) in the P matrix.

• If there are multiple max values in a column, select one.
This won’t affect the optimality of your answer.

(i) The corresponding x value is the value of x̂ for that y.
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(ii) The sum of the selected values from the P matrix is P (C).

(c) P (E) = 1− P (C).
Example 3.41. We have applied recipe 3.40 back when we try to find the
optimal decoder in Example 3.35.

Example 3.42. Find the MAP decoder and its corresponding error proba-
bility for the DMC channel whose Q matrix is given by

x \ y 1 2 3[ ]
0 0.5 0.2 0.3
1 0.3 0.4 0.3

and p = [0.6, 0.4]. Note that the DMC is the same as in Example 3.25 but
the input probabilities are different.

Definition 3.43. In many scenarios, the MAP decoder is too complicated
or the prior probabilities are unknown. In such cases, we may consider using
a suboptimal decoder that ignores the prior probability term in (9). This
decoder is called the maximum likelihood (ML) decoder:

x̂ML (y) = arg max
x

Q (y |x) . (10)

3.44. ML decoder is the same as the MAP decoder when X is a uniform
random variable. In other words, when the prior probabilities p(x) are
uniform, the ML decoder is optimal.

3.45. A recipe for finding the ML decoder and its corresponding error
probability:

(a) Select (by circling) the maximum value in each column (for each value
of y) in the Q matrix.

• If there are multiple max values in a column, select one.
Different choices will lead to different P (E). However, if the infor-
mation about p is not available at the decoder, it can not determine
which choice is better anyway.
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• The corresponding x value is the value of x̂ for that y.

(b) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(c) In the P matrix, select the elements corresponding to the selected po-
sitions in the Q matrix.

(d) The sum of the selected values from the P matrix is P (C).

(e) P (E) = 1− P (C).

Example 3.46. Find the ML decoder and its corresponding error proba-
bility for the DMC channel in Example 3.25 whose Q matrix is

x \ y 1 2 3[ ]
0 0.5 0.2 0.3
1 0.3 0.4 0.3

and p = [0.2, 0.8].

Example 3.47. Find the ML decoder and the corresponding error proba-
bility for a communication over BSC with p = 0.1 and p0 = 0.8.

Note that

• the prior probabilities p0 (and p1) is not used when finding x̂ML,

• the ML decoder and the MAP decoder are the same in this example.

◦ ML decoder can be optimal even when the prior probabilities are
not uniform.
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3.48. MAP vs. ML:

 Decoder is derived from the 𝐏 matrix
 Select (by circling) the maximum value 

in each column (for each value of 𝑦) in 
the 𝐏 matrix.

 The corresponding 𝑥 value is the value 
of 𝑥 𝑦 .

   
 

   

MAP ,

optimal

ˆ argmax ,

ˆ

argmax

argmax

X Yx

x

x

x y p x y

x y

P X x Y y

Q y p xx





    



   MLˆ argmax
x

x y Q y x

 Decoder is derived from the 𝐐 matrix
 Select (by circling) the maximum value 

in each column (for each value of 𝑦) in 
the 𝐐 matrix.

 The corresponding 𝑥 value is the value 
of 𝑥 𝑦 .

 Once the decoder (the decoding table) is derived 𝑃  and 𝑃  are calculated by 
adding the corresponding probabilities in the 𝐏 matrix.

Optimal at least when 𝑝 𝑥 is 
uniform (the channel inputs are 
equally likely)

a posteriori probability

likelihood funtion

Can be derived without knowing the 
channel input probabilities.

prior probability

3.49. In general, for BSC, it’s straightforward to show that

(a) when p < 0.5, we have x̂ML(y) = y with corresponding P (E) = p.

(b) when p > 0.5, we have x̂ML(y) = 1−y with corresponding P (E) = 1−p.

(c) when p = 0.5, all four reasonable decoders have the same P (E) = 1/2.

• In fact, when p = 0.5, the channel completely destroys any con-
nection between X and Y . In particular, in this scenario, X |= Y .
So, the value of the observed y is useless.
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3.4 Optimal Block Decoding for Communications Over BSC

3.50. The decoding techniques (MAP and ML) discussed in the previous
section can be extended to the case in which we simultaneously consider n
consecutive channel output symbols resulted from having n input symbols.

Notation-wise, this simply means we consider an input-output vector pair
(X,Y) instead of an input-output symbol pair (X, Y )

3.51. By the memoryless property of the channel,

P
[
Y = y|X = x

]
≡ Q

(
y|x
)

= Q(y1|x1)×Q(y2|x2)× · · · ×Q(yn|xn).

Example 3.52. For a DMC in which X = {0, 1}, Y = {1, 2, 3}, Q =[
0.5 0.2 0.3
0.3 0.4 0.3

]
, find

(a) Q(122|100)

(b) Q(333|111)

Example 3.53. For BSC, find

(a) Q(101|100)

(b) Q(111|111)

3.54. For BSC,

Q(yi|xi) =

{
p, yi 6= xi,

1− p, yi = xi.

Therefore,

Q
(
y|x
)

= pd(x,y)(1− p)n−d(x,y) =

(
p

1− p

)d(x,y)
(1− p)n, (11)

where d
(
x,y

)
is the number of coordinates in which the two blocks x and

y differ.

Example 3.55. d (101, 100) = , d (111, 111) = ,
d (00101, 01111) =
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3.56. To recover the value of x from the observed value of y, we can apply
the vector version of what we studied about optimal decoder in the previous
section.

• The optimal decoder is again given by the MAP decoder:

x̂MAP

(
y
)

= arg max
x

Q
(
y |x

)
p (x). (12)

• When the prior probabilities p (x) is unknown or when we want simpler
decoder, we may consider using the ML decoder:

x̂ML

(
y
)

= arg max
x

Q
(
y |x

)
. (13)

Plugging-in

Q
(
y|x
)

= pd(x,y)(1− p)n−d(x,y) =

(
p

1− p

)d(x,y)
(1− p)n, (14)

from (11), gives

x̂MAP

(
y
)

= arg max
x

(
p

1− p

)d(x,y)
(1− p)np (x) (15)

= arg max
x

(
p

1− p

)d(x,y)
p (x) . (16)

and

x̂ML

(
y
)

= arg max
x

(
p

1− p

)d(x,y)
. (17)

3.57. Minimum-distance decoder as a ML decoding of block codes over
BSC:

From (17) (or directly from (11)), note that when p < 0.5, which is usually
the case for practical systems, we have p < 1 − p and hence 0 < p

1−p < 1.

In which case, to maximize Q
(
y|x
)
, we need to minimize d

(
x,y

)
. In other

words, x̂ML

(
y
)

should be the codeword x which has the minimum distance
from the observed y:

x̂ML

(
y
)

= arg min
x
d
(
x,y

)
. (18)

In conclusion, for block coding over BSC with p < 0.5, the ML decoder is
the same as the minimum distance decoder.
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3.5 Repetition Code for Channel Coding in Communications Over
BSC

3.58. Recall that channel coding introduces, in a controlled manner,
some redundancy in the (binary) information sequence that can be used at
the receiver to overcome the effects of noise and interference encountered in
the transmission of the signal through the channel.

Information 
Source

Destination

Message

Recovered 
Message

Source 
Encoder

Channel 
Encoder

Transmitter

Remove 
redundancy

Add systematic 

redundancy

Equivalent
Channel

X: channel input

Y: channel output

Source 
Decoder

Channel 
Decoder

(Detector)

Receiver

𝐒

Decoded
value

𝑊

𝑊 𝐒

Figure 12:
System model
for Section 3.5.
A channel en-
coder is added
to improve the
performance
of the system
considered in
Figure 11 in
Section 3.2.

• Note that variables X and Y are still used for the channel input and
channel output, respectively. However, as in Section 3.4, we consider
blocks (vectors) of them. Therefore, the variables used are X and Y.

• Because we introduce another box between the source encoder and the
(equivalent) channel, the output of the source encoder is not the same
as the channel input anymore. Therefore, we rename the output of the
source encoder as S. Again, when we consider a block of output from
the source encoder, we denote it by S.

• The job of the decoder is now to (correctly) guess the value of S. Its
output is now denoted by Ŝ.

◦ Usually, the mapping (by the channel encoder) from S to X is
bijective16; so is the mapping from W to S by the source encoder.

16A bijection, bijective function, or one-to-one correspondence is a function between the elements of two
sets, where each element of one set is paired with exactly one element of the other set, and each element
of the other set is paired with exactly one element of the first set.
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Therefore, one can also say that, as before, the job of the decoder is
still to (correctly) guess the value of X. Once we have the value of
X, we can directly map it back to S and then the original message
W .

3.59. Repetition Code: A simple example of channel encoding is to
repeat each bit n times, where n is some positive integer.

• Use the channel n times to transmit 1 info-bit

• The (transmission) rate is 1
n [bpcu].

◦ bpcu = bits per channel use

3.60. Two classes of channel codes

(a) Block codes

• To be discussed here.

• Realized by combinational/combinatorial circuit.

(b) Convolutional codes

• Encoder has memory.

• Realized by sequential circuit. (Recall state diagram, flip-flop, etc.)

Definition 3.61. Block Encoding: Take k (information) bits at a time
and map each k-bit sequence into a (unique) n-bit sequence, called a code-
word17.

1

Block Encoder

k bits k bits k bits n bits n bits n bits

• The code is called (n, k) code.

• Working with k-info-bit blocks means there are potentially M = 2k

different information blocks.
17Yes, we used this term already in Chapter 2. Both uses of the term “codeword” denote the outputs of

the encoding processes.
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◦ The table that lists all the 2k mapping from the k-bit info-block s
to the n-bit codeword x is called the codebook.

◦ The M info-blocks are denoted by s(1), s(2), . . . , s(M).
The corresponding M codewords are denoted by x(1),x(2), . . . ,x(M),
respectively.

index i info-block s codeword x

1 s(1) = 000 . . . 0 x(1) =

2 s(2) = 000 . . . 1 x(2) =
...

...
...

M s(M) = 111 . . . 1 x(M) =

1

പ𝒔 1
പ𝐬 2

പ𝐬 3

പ𝐬 4

പ𝐱 1

പ𝐱 2

പ𝐱 3

പ𝐱 4

𝑀 = 2𝑘 possibilities

Choose 𝑀 = 2𝑘 from 

2𝑛 possibilities to be 

used as codewords.

Figure 13: The
mapping for
block encoding.

◦ By the bijective mapping from s to x,

pi ≡ p
(
x(i)
)
≡ P

[
X = x(i)

]
= P

[
S = s(i)

]
.

• To have unique codeword for each information block, we need n ≥ k.
Of course, with some redundancy added to combat the error introduced
by the channel, we need n > k.

◦ The amount of redundancy is measured by the ratio n
k .

◦ The number of redundant bits is r = n− k.

• Here, we use the channel n times to convey k (information) bits.

◦ The ratio k
n is called the rate of the code or, simply, the code rate.

◦ The (transmission) rate is R = k
n = log2M

n [bpcu].
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Example 3.62. Find the codebook and code rate for the encoder which
uses repetition code with n = 5.

Example 3.63. To get some idea about the difficulty of finding an optimal
encoder, we need to consider the size of our search space. For k = 5 and
n = 10, how many encoders over BSC are possible?

3.64. When the mapping from the information block s to the codeword x
is invertible, the task of any decoder can be separated into two steps:

• First, find x̂ which is its guess of the x value based on the observed
value of y.

• Second, map x̂ back to the corresponding ŝ based on the codebook.

You may notice that it is more important to recover the index of the code-
word than the codeword itself. Knowing its index is enough to indicate
which info-block produced it.

Example 3.65. Repetition Code and Majority Voting: Back to Example
3.59.

First recall that

(1) MAP decoder is optimal. (It minimizes P (E)).

(2) ML decoder is suboptimal. However, it can be optimal (same P (E) as
the MAP decoder), for example, when the codewords are equally-likely.

(3) ML decoder is the same as the minimum distance decoder when the
crossover probability of the BSC p is < 0.5 (which is usually the case).
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Therefore, minimum distance decoder can be optimal in many situations.
In this example, assume p < 0.5. Let 0 and 1 denote the n-dimensional

row vectors 00 . . . 0 and 11 . . . 1, respectively. Observe that

d
(
x,y

)
=

{
#1 in y, when x = 0,

#0 in y, when x = 1.

Therefore, the minimum distance decoder is

x̂ML

(
y
)

=

{
0, when #1 in y < #0 in y,

1, when #1 in y > #0 in y.

Equivalently,

ŝML

(
y
)

=

{
0, when #1 in y < #0 in y,

1, when #1 in y > #0 in y.

This is the same as taking a majority vote among the received bit in the
y vector.

The corresponding error probability is

P (E) =
n∑

c=dn2e

(
n

c

)
pc(1− p)n−c.

For example, when p = 0.01, we have P (E) ≈ 10−5. Figure 14 shows how
we can view this as having the original BSC channel replaced by a new one
with better crossover probability.

Figure 15 compares the error probability when different values of n are
used.

• Notice that the error probability decreases to 0 when n is increased.
It is then possible to transmit with arbitrarily low probability of error
using this scheme.

• However, the (transmission) rate R = k
n = 1

n is also reduced as n is
increased.

So, in the limit, although we can have very small error probability, we suffer
tiny (transmission) rate.
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Figure 14: With the addition of channel encoder and channel decoder, the performance of
the system is improved. The original BSC, when combined with the channel encoder and
channel decoder, can be viewed as a new equivalent BSC with better crossover probability.

Error Control Coding

1

 Repetition Code at Tx: Repeat the bit n times.
 Channel: Binary Symmetric Channel (BSC) with bit error 

probability p.
 Majority Vote at Rx
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Figure 15: Error probability for a system that uses repetition code at the transmitter
(repeat each info-bit n times) and majority voting at the receiver. The channel is assumed
to be binary symmetric with crossover probability p.

56



Example 3.66. Consider a BSC whose crossover probability is p = 0.2. A
channel code use the following codebook:

s x

0 011
1 100

(a) Suppose the codeword 011 was transmitted. What is the probability
that the channel output is 101?

(b) Assume that the two possibilities of the info-bit S are equally likely.
Suppose we observed 101 at the output of this channel.

(i) What is the probability that the codeword 011 was transmitted?

(ii) What is the probability that the codeword 100 was transmitted?

(iii) At the receiver, if a MAP decoder is used, find the decoded code-
word and the corresponding decoded info-bit.
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3.67. We may then ask “what is the maximum (transmission) rate of infor-
mation that can be reliably transmitted over a communications channel?”
Here, reliable communication means that the error probability can be made
arbitrarily small. Shannon provided the solution to this question in his
seminal work. We will revisit this question in the next chapter.

58


